Skip to content(if available)orjump to list(if available)

NeurIPS best paper awards 2025

NeurIPS best paper awards 2025

1 comments

·December 5, 2025

Scene_Cast2

I think my favorite of the bunch is the "Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model" paper. Easy to read, gets the point across very intuitively and quickly, and the point is very interesting and relevant to a lot of people.

About the Superposition paper - this is close to what I've been thinking about over the past week. I'm thinking that concepts or choices in a "superposition" are harder for a fully-differentiable neural net to reason about. For example, if there's a "green" vs "purple" choice to be made, it can't fully commit to either (especially if they're 50-50), and will have to reason about both simultaneously (difficult due to nonlinear manifold space). Discretizing to tokens (non-differentiable argmax) forces a choice, and that allows it to reason about a single concept separately and easier.